QuantLearn
Trading Strategies
Monte Carlo Simulation
Statistical modeling for risk assessment
Historical Simulation Results
Monte Carlo simulation analysis across different market regimes, demonstrating the method's strengths in risk assessment rather than directional prediction.

Monte Carlo Price Path Simulation
Thousands of simulated price paths showing the range of potential outcomes and probability distributions for risk analysis.

Risk Metrics Analysis
VaR and Expected Shortfall calculations derived from simulation results, comparing model predictions with actual historical outcomes.

Model Validation Results
Statistical validation of Monte Carlo model assumptions including return distribution tests and prediction accuracy metrics.
Stochastic Process Modeling and Simulation Theory
Monte Carlo simulation uses massive random sampling to model complex stochastic processes like stock price movements.
Named after the Monte Carlo casino, this method computationally simulates thousands of possible future price paths.
The fundamental question: Can we use Monte Carlo simulation to predict stock prices, even directionally?
Traditional finance assumes stock prices follow a Wiener process (continuous-time random walk with drift).
Reality challenges this assumption: markets close overnight, volatility clusters, and fat-tail distributions exist.
Monte Carlo becomes powerful for risk management, scenario analysis, and options pricing rather than pure prediction.
The method excels at quantifying uncertainty and estimating probability distributions of future outcomes.
Mathematical Foundation
1Geometric Brownian Motion
Stochastic differential equation modeling stock price evolution with drift μ and volatility σ.
2Discrete Price Evolution
Discrete time approximation where Z ~ N(0,1) is a random normal variable for each time step.
3Log-Normal Distribution
Future stock price follows log-normal distribution, ensuring prices remain positive.
4Value at Risk (VaR)
Monte Carlo estimation of Value at Risk at confidence level α using simulated price distribution.
5Expected Shortfall
Expected loss beyond VaR threshold, providing tail risk measurement from simulation results.
Core Algorithm Implementation
The Monte Carlo simulation algorithm generates thousands of price paths to analyze risk scenarios and estimate probability distributions.
Parameter Estimation
def estimate_gbm_parameters(prices, lookback_days=252):
"""Estimate drift and volatility parameters from historical data"""
returns = np.log(prices / prices.shift(1)).dropna()
# Annualized parameters
mu = returns.mean() * 252 # Drift (annualized)
sigma = returns.std() * np.sqrt(252) # Volatility (annualized)
# Statistical tests
from scipy import stats
# Test for normality of returns
shapiro_stat, shapiro_p = stats.shapiro(returns[-lookback_days:])
# Test for autocorrelation (random walk assumption)
ljung_box = sm.stats.diagnostic.acorr_ljungbox(returns[-lookback_days:], lags=10)
params = {
'mu': mu,
'sigma': sigma,
'current_price': prices.iloc[-1],
'returns_normality_p': shapiro_p,
'ljung_box_p': ljung_box['lb_pvalue'].iloc[-1],
'lookback_period': lookback_days
}
return paramsEstimates drift and volatility from historical returns with statistical validation of model assumptions.
Monte Carlo Price Simulation
def monte_carlo_simulation(S0, mu, sigma, T, dt, num_simulations=10000):
"""Generate Monte Carlo price paths using Geometric Brownian Motion"""
# Time parameters
num_steps = int(T / dt)
times = np.linspace(0, T, num_steps + 1)
# Pre-allocate simulation matrix
simulations = np.zeros((num_simulations, num_steps + 1))
simulations[:, 0] = S0
# Generate random shocks
np.random.seed(42) # For reproducibility
randoms = np.random.standard_normal((num_simulations, num_steps))
# Simulate price paths
for t in range(1, num_steps + 1):
dt_sqrt = np.sqrt(dt)
drift = (mu - 0.5 * sigma**2) * dt
diffusion = sigma * dt_sqrt * randoms[:, t-1]
simulations[:, t] = simulations[:, t-1] * np.exp(drift + diffusion)
# Create results dataframe
results = pd.DataFrame(
simulations.T,
index=times,
columns=[f'Path_{i}' for i in range(num_simulations)]
)
return resultsGenerates thousands of potential price paths using geometric Brownian motion with vectorized calculations for efficiency.
Risk Analysis and Statistics
def analyze_simulation_results(simulations, confidence_levels=[0.05, 0.01]):
"""Comprehensive analysis of Monte Carlo simulation results"""
final_prices = simulations.iloc[-1] # Terminal prices
initial_price = simulations.iloc[0, 0]
# Basic statistics
stats_dict = {
'mean_final_price': final_prices.mean(),
'median_final_price': final_prices.median(),
'std_final_price': final_prices.std(),
'min_final_price': final_prices.min(),
'max_final_price': final_prices.max(),
'prob_profit': (final_prices > initial_price).mean(),
'expected_return': (final_prices.mean() / initial_price - 1) * 100
}
# Value at Risk calculations
for conf_level in confidence_levels:
var_level = np.percentile(final_prices, conf_level * 100)
var_loss = initial_price - var_level
# Expected Shortfall (Conditional VaR)
shortfall_scenarios = final_prices[final_prices < var_level]
expected_shortfall = initial_price - shortfall_scenarios.mean() if len(shortfall_scenarios) > 0 else 0
stats_dict[f'var_{int(conf_level*100)}'] = var_loss
stats_dict[f'es_{int(conf_level*100)}'] = expected_shortfall
# Path-dependent statistics
max_drawdowns = []
for col in simulations.columns:
path = simulations[col]
running_max = path.expanding().max()
drawdown = (path / running_max - 1) * 100
max_drawdowns.append(drawdown.min())
stats_dict['avg_max_drawdown'] = np.mean(max_drawdowns)
stats_dict['worst_drawdown'] = np.min(max_drawdowns)
return stats_dictComprehensive risk analysis including VaR, Expected Shortfall, probability of profit, and path-dependent metrics.
Trading Strategy Integration
def monte_carlo_trading_strategy(prices, forecast_days=30, rebalance_freq=5):
"""Integrate Monte Carlo analysis into trading decisions"""
results = []
for i in range(len(prices) - forecast_days):
# Historical data for parameter estimation
hist_prices = prices.iloc[max(0, i-252):i+1]
if len(hist_prices) < 30: # Minimum data requirement
continue
# Estimate parameters
params = estimate_gbm_parameters(hist_prices)
# Run simulation
simulations = monte_carlo_simulation(
S0=params['current_price'],
mu=params['mu'],
sigma=params['sigma'],
T=forecast_days/252, # Convert to years
dt=1/252,
num_simulations=1000
)
# Analyze results
analysis = analyze_simulation_results(simulations)
# Generate trading signal based on risk-reward profile
prob_profit = analysis['prob_profit']
expected_return = analysis['expected_return']
var_5 = analysis['var_5']
# Risk-adjusted signal generation
if prob_profit > 0.6 and expected_return > 5 and var_5 < initial_price * 0.1:
signal = 1 # Bullish
elif prob_profit < 0.4 and expected_return < -2:
signal = -1 # Bearish
else:
signal = 0 # Neutral
results.append({
'date': prices.index[i],
'price': params['current_price'],
'signal': signal,
'prob_profit': prob_profit,
'expected_return': expected_return,
'var_5': var_5,
'forecast_period': forecast_days
})
return pd.DataFrame(results)Integrates Monte Carlo analysis into systematic trading decisions using risk-reward metrics and probability thresholds.
Implementation Steps
- 1Estimate drift (μ) and volatility (σ) parameters from historical price data
- 2Validate model assumptions: test for return normality and independence
- 3Configure simulation parameters: time horizon, number of paths, time steps
- 4Generate thousands of price paths using Geometric Brownian Motion
- 5Calculate comprehensive risk metrics: VaR, Expected Shortfall, probability of profit
- 6Analyze path-dependent statistics like maximum drawdown scenarios
- 7Generate trading signals based on risk-adjusted expected returns
- 8Implement position sizing based on simulation-derived risk estimates
- 9Monitor model performance and recalibrate parameters periodically
Key Metrics
Risk Considerations
Practice Implementation
Prerequisites
Mathematical Background
- • Linear regression and OLS estimation
- • Time series analysis (stationarity, unit roots)
- • Hypothesis testing and p-values
- • Basic econometrics (error correction models)
Technical Skills
- • Python programming (pandas, numpy)
- • Statistical libraries (statsmodels)
- • Data visualization (matplotlib)
- • Financial data handling (yfinance)
Complete Implementation
Access the full Python implementation from the original quantitative trading repository:
# Complete pair trading implementation
git clone https://github.com/je-suis-tm/quant-trading.git
cd quant-trading
python "Pair trading backtest.py"
# Modify tickers and parameters for your own analysisLearning Checkpoints
Understand Cointegration
Can you explain why two assets might be cointegrated and what breaks this relationship?
Interpret Statistical Tests
Practice reading ADF test results and understanding when to accept/reject cointegration.
Signal Generation
Implement Z-score calculations and understand threshold selection (±1σ vs ±2σ).
Risk Management
Understand position sizing, monitoring regime changes, and exit strategies.
Recommended Learning Path
Immediate Actions
- Download and run the Python script
- Test with different asset pairs
- Experiment with threshold parameters
Advanced Studies
- Learn Johansen cointegration test
- Study Vector Error Correction Models
- Explore multiple asset pair trading
Important Disclaimer
This strategy involves significant risk. Historical cointegration relationships can break permanently. Always use proper risk management, position sizing, and never risk more than you can afford to lose. Paper trade extensively before using real capital.